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ABSTRACT

A domain decomposition method for solving partial differential equa-

tions is described. The conditions on interfaces will all be of Dirichlet

type and obtained by the boundary element method using very few

(less than 10) unknowns.

1. INTRODUCTION

Domain decomposition methods are based, as the name suggests, on subdivision of the

domain into several subdomains and solving the problem on several subdomains in parallel.

These methods are becoming the focus of research on numerical methods for the solution

of partial differential equations (Widlund [34]). The methods can be regarded as divide-

and-conquer algorithms since the problems on the subregions can be solved by well known

techniques. The interactions between the solutions on the subdomains lead to an iterative

procedure. When the number of subdomains is large one can improve the convergence of

this iterative procedure by using a coarse grid to obtain starting values for the solution on

interfaces. In this respect, the methods are similar to multigrid methods. The crucial point

for domain decomposition schemes is how to pass information from one domain to other

processors. Two different approaches were followed in the literature (see [2], [8], [10], [11],

[16], [30], and references there). The first approach is based on decomposition of the domain

into contiguous regions (see [13], [20]-[23], [25], [26], [33], and others). The second is based

on having overlapping regions (Schwarz alternating method [9], [12], [18], [19], [28], [29], [32],

[35], and others).

The main difficulty of such parallel techniques is in the initial assignment of values to the

interfaces between domains. The more accurate such values are, the faster the convergence.

As we mentioned earlier, one can use the solution on a coarse mesh (as in multigrid). Here

we suggest the use of boundary element methods to approximate the solution at interfaces.
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Boundary element methods were developed by Brebbia [5] and others. These methods

are now widely used in various linear and nonlinear problems. Several papers ([1], [4], [6]-[8],

[14], [17], [24], [25], [31]) are listed here. The list is by no means exhaustive.

In the next section, we introduce the problem and describe the domain decomposition

method to be used. Section 3 will describe the boundary element method and its use for the

approximation of interface values. In section 4, we give the details of the algorithm on Intel

IPSC/2 Hypercube.

2. DOMAIN DECOMPOSITION

Consider the following elliptic problem

-Au = f in n (1)

u = g on dQ (2)

where Q is the L shaped domain (Figure 1). The domain is divided into M subdomains 0,.

The size of each subdomain will be such that the work is balanced among the processors. The

subdomains are "colored" or numbered. Each subdomain borders subdomains of different

colors (or numbers).

If we have boundary conditions for all M\ subdomains numbered 1, one can assign these

domains to the p processors for independent solution. Once the solution is obtained, the

next set can be taken. If the domains overlap, there will be no need to transfer data;

otherwise data is transferred to the neighboring subregions.

Remarks:

1. Boundary conditions on interfaces will be obtained following the recipe in the next

section.

2. If p < M\, then we solve for the first p subdomains numbered 1, transfer information

if necessary and take the next p subdomains. If at some step one is left with less than
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Figure 1:

p subregions of the same "color", the other processors can start the next "color'

3. BOUNDARY ELEMENT METHODS

"Boundary elements (Brebbia et al. [6]) have emerged as a powerful alternative to finite

elements particularly in cases where better accuracy is required due to problems such as

stress concentration or where the domain extends to infinity. The most important feature

of boundary elements, however, is that it only requires discretization of the surface rather

than the volume" (Brebbia and Dominguez [7]). Several examples were given there to the

advantage of boundary elements.

The starting boundary integral equation required by the method can be deduced in a



simple way based, for example, on weighted residuals (see e.g., Brebbia and Dominguez [7]).

It was shown [7] that the problem

V 2
u = in Q. (3)

u = u on To (4)

du - r /*\
q = — = q on I N (5)

where n is the outward normal to the boundary T = Tjy U Tjv is equivalent to

/(VVWft = - / qudY-f qudV+l uq'dT + [ uq'dT, (6)
Jq JrN JrD JrN JrD

where u* is a weight function with normal derivative q* on the boundary. The boundary

integral equation is

-u { + / uq'dT = / qu'dT (7)
Si */ 1 J 1

where u x

is the value if (a;
1

) and x %

is a boundary point. The numerical solution of the integral

equation is accomplished by dividing T into TV pieces T, {To into N\ pieces and T^ into N?

pieces) and solving the system

\u { + £&J u J = £ Gij

q
j

i = 1, 2, . .
.

, TV (8)

where

//
tJ

In matrix form

where

/ qdT (9)

Gij = f u'dT. (10)

j

HU = GQ (11)



Note that N\ values of u and A^ values of q are known hence there are only N unknowns.

One can rearrange the system so that X will contain the unknowns and solve

AX = F. (13)

F is found by multiplying the corresponding columns by the known values of w's or q's. Once

the boundary values are obtained, one can compute the interior values using

u
l = I qu

mdT - I uq*dT, (14)

or
N N

u l = Y,G tJ

q
J -£#«'V. (15)

J=l 3=1

In our case we use 7 points on the boundary and 1 interior point. The number of

unknowns in this case is 9. One has to solve a system of 9 equations and then evaluate u at

one point on each side of each subdomain J7,. This step can be done in parallel.

Remarks:

1. If the domain Q was a rectangle, it is sufficient to take 4 points for the boundary

element (one on each side).

2. The boundary element method was applied to inhomogeneous and nonlinear problems

(see e.g., [17], [31]).

3. A list of fundamental solutions for various problems is given in Brebbia [8].
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